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Abstract

The composites of materials with high contrasting properties is an interesting topic to study as it has ap-
plications. In this article, we wish to study problems in high oscillating domains, where the oscillatory part 
is made of two materials with high contrasting conductivities (or diffusivity). Thus the low contrast material 
acts as near insulation in-between the conducting materials. In the first part, we study the homogenization 
problem of an elliptic equation. The main discussion in this article is the study of optimal control problems 
based on the unfolding method. The interesting result is the difference in the limit behavior of the optimal 
control problem, which crucially depends on the action of the control, whether it is on the conductivity part 
or insulating part. In both cases, we derive the two-scale limit controls problems which are quite similar 
as far as analysis is concerned. But, if the controls are acting on the conductive region, a complete scale 
separation is available, whereas a complete separation is not visible in the insulating case due to the intrin-
sic nature of the problem. In this case, to obtain the limit optimal control problem in the macro scale, two 
cross-sectional cell problems are introduced. We do obtain the homogenized equation for the state, but the 
two-scale cost functional remains as it is.
© 2021 Elsevier Inc. All rights reserved.

MSC: 35B27; 35B40; 49J20; 80M40

Keywords: Contrasting diffusivity; Rough boundary; Optimal control; Unfolding operator; Homogenization

* Corresponding author.
E-mail addresses: nands@iisc.ac.in (A.K. Nandakumaran), abusufian@iisc.ac.in (A. Sufian).
https://doi.org/10.1016/j.jde.2021.04.031
0022-0396/© 2021 Elsevier Inc. All rights reserved.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jde.2021.04.031&domain=pdf
http://www.sciencedirect.com
https://doi.org/10.1016/j.jde.2021.04.031
http://www.elsevier.com/locate/jde
mailto:nands@iisc.ac.in
mailto:abusufian@iisc.ac.in
https://doi.org/10.1016/j.jde.2021.04.031


A.K. Nandakumaran and A. Sufian Journal of Differential Equations 291 (2021) 57–89
Fig. 1. Composite material.

1. Introduction

The study of partial differential equations (PDE) with strong contrasting diffusivity is im-
portant as it appears in modeling of several multi-scale physical problems such as the double 
porosity model, effective properties of composite material with soft and hard core, effective con-
ductivity of composites made of materials having high and low conductivities, etc. Typically, for 
example, in a usual composite material, say consisting of two materials with conductivities α and 
β which oscillates in a small scale ε which tends to zero. In this situation, the uniform ellipticity 
of the elliptic system in the micro-scale is retained. In a strongly varying diffusivity problem, the 
domain (or composite) consisting of two materials which can be thought of as soft inclusions (say 
Bε) distributed periodically in the small scale (ε → 0) whose conductivity is of order αε → 0. 
The other material has conductivity O(1) (see Fig. 1). This is the highly contrasting nature of 
the composite. Here note that the ellipticity coefficient is bounded below by αε and hence it is 
not uniformly elliptic like normal micro composites. Hence, we need to give special attention to 
study such problems.

The homogenization of PDEs with strong contrasting diffusivity terms appears in applications 
like the mathematical model of composites with high-modulus reinforcement. One of the earli-
est works on the multi-scale analysis of high contrast composites is available in G.P. Panasenko 
[1] and also see Ch. 7, [2] for the homogenization process. See also ([3,4]). In [5] authors have 
studied the homogenization of a double porosity model in a single-phase flow which is an inter-
esting piece of work. In another work, Charef and Sili [6] have considered the homogenization 
of a conductivity equation for a medium made up of highly conductive vertical fiber surrounded 
by another material assumed to be a poor conductor whereas in [7], the author investigates ho-
mogenization of a stationary diffusion equation in a periodic composite medium made of two 
components with the ratio between the diffusion coefficients O( 1

α2
ε
) where ε is the size of the 

period and αε → 0. The homogenization of a hyperbolic PDE with strongly contrasting diffusive 
coefficients is performed in [8] and obtained the homogenized limit as a coupled two-scale sys-
tem of macro and micro scales. We could also see the difficulty in scale separation in the case 
of optimal control problem in the present work as in [8], but eventually, we could achieve the 
separation by introducing a second cell problem. We also see the presence of the source term in 
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the cost functional. Thus, strongly contrasting elliptic coefficients exhibit interesting behavior in 
certain cases. For further reading in this direction, we refer to the articles [9–11] and references 
therein.

Our aim is to consider domains with very general periodically oscillatory boundaries, where 
the oscillations with conducting materials are separated by nearly insulating materials together 
with an associated optimal control problem. The study of homogenization problems in oscillating 
boundary domains is a very active area for the last two decades and some relevant articles in this 
direction are ([12–19]) and references therein which definitely not exhaustive. Regarding optimal 
control problems in the oscillating domain, we refer to ([20–26]) and references therein and for 
general reading on homogenization, see ([27–32]).

Our domain under study consists of a fixed domain �− together with a highly oscillating 
component �+

ε . We intend to consider very general periodic oscillatory part �+
ε consisting of 

highly contrasting material (see Fig. 2). As a particular case, one can consider rapidly oscillating 
pillars (see Fig. 3) of base O(ε) and height O(1) consisting of a core material of conductivity 
O(1) surrounded by another material with conductivity O(α2

ε ). In this direction, we cite the work 
of A. Gaudiello, and A. Sili [33]. They have considered homogenization of an elliptic PDE with 
strongly contrasting diffusivity term in a forest type or pillar type oscillating domain where a 
highly conductive pillar is covered by an insulator type material and the periodic distribution of 
pillars depends on the vanishing sequence ε.

The present article is devoted to the study of the homogenization of an elliptic PDE with 
strong contrasting diffusivity term in a general periodic oscillating domain and an associated in-
terior optimal control problem. We consider an interior optimal control problem with a state or 
constraint equation where we apply control on the high conductive part and insulating (low con-
ducting) part separately. Though the convergence analysis to obtain the two-scale limit system, is 
similar in both cases, the scale separation process is quite different. The first part is a non-trivial 
generalization of the work in [33], where the problem is in a pillar type oscillating domain. Here 
we are allowing the reference cell to be very general as long as the reference cells cross-section 
in x1 direction is connected and having certain properties, see for typical example in Fig. 2. To 
get the limit problem, we have to define a family of cross-sectional cell problems (3). The un-
folding operator developed in ([34,35]) is used for the analysis. To write the limit optimal control 
problem in scale separated form, another cross-sectional cell problem (28) is introduced. Using 
these cell problems, the separation of macro-scale and micro-scale is done in the limit optimal 
control problem when controls are acting on the high conducting part. It is surprising to see the 
appearance of the source term f in the limit cost functional, which is seen for the first time in 
our experience. On the other hand, if the controls act on the low conducting region, a complete 
scale separation is not possible as far as these authors are concerned. However, we are able to 
obtain the scale separation for the state, whereas the cost functional is not scale separated, which 
is a new feature of the problem.

The organization of the paper is as follows. In Section 2, we introduce the configuration of 
the domain and recall the unfolding operator and its properties. The problem statement is given 
in Section 3. In Section 3.1, limit function spaces are defined. The limiting analysis of the varia-
tional form and the well posedness of the limit system is discussed in Section 4. Homogenization 
of the interior optimal control problem with controls on the high conductive region is considered 
in Section 5. In Section 6, separation of macro and micro scale is performed on the limit opti-
mal control problem. Finally, in Section 7, we study the analysis with controls acting on the low 
conductive (insulating) region.
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Fig. 2. Typical example of reference cells.

Fig. 3. Pillar type oscillating domain.

2. Domain description and unfolding operator

This work can be carried out in any finite dimension but for simpler presentation we will 
consider in 2-dimensional domain. For the same reason we are considering the reference cell as 
in Fig. 4, instead of figure as in Fig. 2. Now we will give description and geometrical assumptions 
on the reference cell mathematically. Let � ⊂ (0, 1) × (0, 1) (it is just for simplicity, one can 
consider (0, L) × (0, L) for any L > 0) and C, I ⊂ �. We divide � into two components C and 
I , that is � = C

⋃
I , C

⋂
I = φ (empty set)and satisfies the following properties:

(i) �, C, I are Lipschitz domains.
(ii) The one-dimensional Lebesgue measure of C ∩{(0, 1) ×0} and C ∩{(0, 1) ×1} are strictly 

positive that is |C ∩ {(0, 1) × 0}| > 0 and |C ∩ {(0, 1) × 1}| > 0.
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Fig. 4. Reference cell.

Fig. 5. Oscillating domains.

(iii) For x2 ∈ (0, 1), let us define Y(x2) = {y1 ∈ (0, 1) : (y1, x2) ∈ �}, YC(x2) = {y1 ∈ (0, 1) :
(y1, x2) ∈ C} and YI(x2) = {y1 ∈ (0, 1) : (y1, x2) ∈ I }. We assume that there exists δ > 0, 
such that the Lebesgue measure of Y(x2), YC(x2) and YI(x2) are greater than δ that is 
|Y(x2)|, |YC(x2)|, |YI(x2)| > δ for all x2 ∈ (0, 1).

A 2-dimensional presentation of �, I , C, YC, and YI are given in Fig. 4. For ε = 1
m

where m ∈ Z+, 
(in fact, one can take any ε → 0) define

Cε =
m−1⋃
k=0

{(x1, x2) : x1 ∈ (kε + εYC(x2)), x2 ∈ (0,1)},

Iε =
m−1⋃

{(x1, x2) : x1 ∈ (kε + εYI(x2)), x2 ∈ (0,1)}.

k=0
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The upper oscillating part �+
ε and the lower fixed part �− are given by (cf. Fig. 5)

�+
ε = (

Iε ∪ Cε

)o =
m−1⋃
k=0

{(x1, x2) : x1 ∈ (kε + εY (x2)), x2 ∈ (0,1)}, �− = (0,1) × (0,−1).

The oscillating domain under consideration is �ε =
(
�+

ε ∪ �−
)o

. The limit domain � =(
�+ ∪ �−

)o

, where �+ = (0, 1)2. We denote the common boundary of Cε and �− by γ ε
C :

γ ε
C = {(x1,0) : (x1,0) ∈ Cε}.

The interface between �+ and �− is demoted by γ , which is given by

γ = {(x1,0) : x1 ∈ (0,1)}.

For our analysis, unfolding operator will be used as a main tool which is going to be recalled 
now.

2.1. Interior unfolding operator

For our analysis we will make use of unfolding operator for general oscillating domain defined 
in [34,35]. For the sake of completeness we recall the definition and some properties of unfolding 
operator without proof.

The unfolded domain corresponding to the upper part �+
ε is given by

�u = {(x1, x2, y1) : (x1, x2) ∈ �+, y1 ∈ Y(x2)}.

Definition 2.1. (The unfolding operator) Let φε : �u → �+
ε be defined as φε(x1, x2, y1) =(

ε
[

x1
ε

]+ εy1, x2
)
. The ε- unfolding of a function u : �+

ε → R is the function u ◦ φε : �u → R. 
The operator which maps every function u : �+

ε → R to its ε-unfolding is called the unfolding 
operator. Let the unfolding operator is denoted by T ε , that is,

T ε : {u : �+
ε → R} → {T εu : �u →R}

is defined by

T εu(x1, x2, y1) = u
(
ε
[x1

ε

]
+ εy1, x2

)
for all (x1, x2, y1) ∈ �u.

If U ⊂ R2 containing �+
ε and u is a real valued function on U , T εu will mean, T ε acting on the 

restriction of u to �+
ε .

We denote T ε
C as T ε|�u

C
. Now we recall some crucial properties of unfolding operator without 

proof. For proof we refer to the reader to see [34].

Proposition 2.2. For each ε > 0,
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(i) T ε is linear. Further, if u, v : �+
ε → R, then, T ε(uv) = T ε(u)T ε(v).

(ii) Let u ∈ L1(�+
ε ). Then, ∫

�u

T ε(u)dxdy1 =
∫

�+
ε

udx.

(iii) Let u ∈ L2(�+
ε ). Then, T εu ∈ L2(�u) and ‖T εu‖L2(�u) = ‖u‖L2(�+

ε ).

(iv) For u ∈ H 1(Cε), we have T ε
C u, 

∂

∂x2
(T ε

C u) ∈ L2(�u
C ). Moreover,

∂

∂x2
T ε

C u = T ε
C

∂u

∂x2
and

∂

∂y1
T ε

C u = εT ε
C

∂u

∂x1
.

(v) For any u ∈ L2(�+), T ε
C u → u strongly in L2(�u

C ). More generally, if uε → u strongly in 
L2(�+), then, T ε

C uε → u strongly in L2(�u
C ).

(vi) For any φ defined on �+
ε or any subset of �+

ε , we denote φ̃, the extension of φ by 0 to 
the domain �+. Let, for every ε, uε ∈ L2(�+

ε ) be such that T εuε ⇀ u weakly in L2(�u). 
Then,

ũε ⇀

∫
Y(x2)

u(x1, x2, y1)dy1 weakly in L2(�+).

2.2. Boundary unfolding operator:

In order to get the interface conditions, we now introduce the following boundary unfolding 
operator T ε

b on γ ε
C . For every ε > 0, let us denote the unfolded boundary of γ ε

C by γ u
C , defined by

γ u
C = {(x1,0, y1) : x1 ∈ (0,1), y1 ∈ C̄ ∩ {(0,1) × 0}}.

Define φε
γC

: γ u
C → γ ε

C as

φε
γC

(x1,0, y1) =
(
ε
[x1

ε

]
+ εy1,0

)
Define boundary unfolding operator T ε

b : {u : γ ε
C →R} → {T ε

b : γ u
C →R} as T ε

b u = u ◦ φε
γC

.

Proposition 2.3. The boundary unfolding operator T ε
b enjoys the following properties:

(i) T ε
b is linear. Further, if u, v : γ ε

C → R, then, T ε
b (uv) = T ε

b (u)T ε
b (v),

(ii) for u ∈ L2(γ ε
C ), then ‖T ε

b u‖L2(γ u
C ) = ‖u‖L2(γ ε

C ).

(iii) For any φ ∈ L2(γC), ‖T ε
b φ − φ‖L2(γ u

C ) → 0 as ε → 0.

(iv) Let {φε} be a sequence in L2(γC) such that ‖φε −φ‖L2(γC) → 0, then ‖T ε
b φε −φ‖L2(γ u

C ) →
0,
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Note: We do not require unfolding operators T ε
I corresponding to the insulating part Iε.

3. Problem description

In the above prescribed domain, firstly we want to consider the following ε dependent varia-
tional problem,

⎧⎪⎨⎪⎩
find uε ∈ H 1(�ε) such that∫
�ε

(
χ�− + χCε + ε2χIε

)
∇uε∇φ +

∫
�ε

uεφ =
∫
�ε

f φ, for all φ ∈ H 1(�ε), (1)

where f ∈ L2(�). The Lax-Milgram theorem ensures the existence and the uniqueness of the 
solution uε of the problem (1). Our aim is to analyze the asymptotic behavior of the above 
variational form as the oscillating parameter ε → 0. Later in Section 5 an interior optimal control 
problem has been considered. Note that in Cε, the normalized diffusivity is 1, whereas in Iε, it is 
ε2 which acts like an insulator. Of course, we have considered insulation only on one side of the 
main conducting material, but this is not an issue, we can apply insulation on both sides of Cε. 
Thus, it is a standard Laplacian problem with coefficients 1 and ε2 and hence it is not uniformly 
elliptic.

3.1. Limit function space and limit problem

In order to define the solution of the homogenized variational form, limit optimal control 
problem, and cell problems, we need appropriate function spaces which we will define now. For 
any function φ defined on �, we may write φ = φ+χ�+ + φ−χ�− = (φ+, φ−) throughout the 
article.

1. Define H(�) = {φ : φ+ ∈ L2((0, 1); H 1(0, 1)), φ− ∈ H 1(�−), φ+ = φ−on γ } with the fol-
lowing norm

‖φ‖H(�) = ‖φ−‖H 1(�−) + ‖φ+‖L2(�+) +
∥∥∥∥∂φ+

∂x2

∥∥∥∥
L2(�+)

.

2. For any x2 ∈ (0, 1), define V x2 = {w = w(y1) ∈ H 1(Y (x2)) : w = 0 a.e. in YC(x2)} with the 
following norm

‖w‖Y(x2) = ‖w‖L2(Y (x2)
+
∥∥∥∥ ∂w

∂y1

∥∥∥∥
L2(Y (x2)

.

3. Finally, V (�) =
{
ψ = ψ(x, y1) ∈ L2(�u) : ψ = 0 in �u

C ,
∂ψ

∂y1
∈ L2(�u)

}
with the follow-

ing norm

‖ψ‖V (�) = ‖ψ‖L2(�u) +
∥∥∥∥ ∂ψ

∂y

∥∥∥∥
2 u

.

1 L (� )
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Then, the limit problem in variational form is: u = (u+, u−) ∈ H(�) solves uniquely⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
�+

|YC(x2)|∂u+

∂x2

∂φ

∂x2
+
∫

�+

⎛⎜⎝|Y(x2)| −
∫

YI (x2)

ξdy1

⎞⎟⎠u+φ +
∫

�−
(∇u−∇φ + uφ)

=
∫

�+

⎛⎜⎝|Y(x2)| −
∫

YI (x2)

ξdy1

⎞⎟⎠f φ +
∫

�−
f φ, for all φ ∈ H(�).

(2)

We define the family of cell problems as follows: for x2 ∈ (0, 1), define ξ = ξ(x2, ·) as the unique 
solution defined on the cell Y(x2) by⎧⎪⎪⎪⎨⎪⎪⎪⎩

ξ(x2, ·) ∈ V x2∫
Y(x2)

∂ξ(x2, y1)

∂y1

∂w(y1)

∂y1
dy1 +

∫
Y(x2)

ξ(x2, y1)w(y1) dy1 =
∫

Y(x2)

w(y1) dy1 for all w ∈ V x2 .

(3)

4. Convergence and main theorem

This section is devoted to prove one of the main theorems of this article.

Theorem 4.1. For every ε let uε be the unique solution to the variational problem (1). Let H(�)

and V x2 be defined as in Section 3.1 and u = (u+, u−) ∈ H(�) be the unique solution of the 
variational form (2). Then⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u−
ε ⇀ u− weakly in H 1(�−),

ũ+
ε ⇀ |Y(x2)|u+ +

∫
YI (x2)

(f − u+)ξ(x2, y1)dy1 weakly in L2(�+)

χ+
Cε

∂̃u+
ε

∂x1
⇀ 0, χ+

Cε

∂̃u+
ε

∂x2
⇀ |YC(x2)|∂u+

∂x2
weakly in L2(�+)

εχ+
Iε

∂̃u+
ε

∂x1
⇀

∫
YI(x2)

∂u1

∂y1
dy1, εχ+

Iε

∂̃u+
ε

∂x2
⇀ 0 weakly in L2(�+)

(4)

as ε → 0.

Proof. The proof will be accomplished in several steps.

Step 1: (Uniform boundedness) In (1) take φ = uε as a test function to get

‖χC+
ε
∇uε‖L2(�+

ε ) + ε‖χI+
ε
∇uε‖L2(�+

ε ) + ‖∇uε‖L2(�−) + ‖uε‖L2(�ε)
� ‖f ‖L2(�ε)

(5)
65



A.K. Nandakumaran and A. Sufian Journal of Differential Equations 291 (2021) 57–89
Thus observe a change in the order of the bound in the gradient in conducting and insulating ma-
terials, that is ‖∇uε‖L2(C+

ε ) ≤ l, ‖∇uε‖L2(I+
ε ) ≤ lε−1, where l is a generic constant. In essence, 

we do not have the uniform bound on the gradient, which is not surprising as the bound inversely 
depends on the ellipticity constant. Hence the idea is to effectively use the uniform bound wher-
ever it is available.

Step 2: (Convergence of subsequences) From (5) and by the properties of unfolding operator and 
weak compactness of H 1(�−), there exist u0(x, y1) ∈ L2(�u), η(x, y1) = (η1, η2), z(x, y1) =
(z1, z2) ∈ (L2(�u))2 and u− ∈ H 1(�−) such that, weakly

uε ⇀ u− in H 1(�−)

T ε(u+
ε ) ⇀ u0(x, y1) in L2(�u)

T ε(χC+
ε
∇̃uε) ⇀ χC(y1, x2)η(x, y1) = χC(y1, x2)(η1, η2) in (L2(�u

C ))2

T ε(εχI+
ε
∇̃uε) ⇀ χI(y1, x2)z(x, y1) = χI(y1, x2)(z1, z2) in (L2(�u))2.

In the remaining steps, we identify u0, η1, η2, z1, z2 and get properties enjoyed by these func-
tions.

Step 3: In this step will show that u0 is independent of y1 in �u
C and the existence of u+ ∈

L2(�+), u1 ∈ L2(�u) with u1 = 0 a.e. in �u
C such that

u0(x, y) = u+(x) + u1(x, y1). (6)

First will show the existence of u+. From (5) we have ‖u+
ε ‖H 1(Cε)

≤ l where l is a generic 
constant independent of ε. Now using the definition of restricted unfolding operator T ε

C we get 
T ε

C uε = T ε(uε|Cε ). Hence we have

T ε
C uε ⇀ u0(x, y1)|�u

C
weakly in L2(�u

C ).

Now from the properties of derivative of unfolding operator we get 
∂

∂y1
T ε

C u+
ε = εT ε

C

(
∂uε

∂x1

)
. 

Since we have uniform bound on 

∥∥∥∥∂u+
ε

∂x1

∥∥∥∥
L2(Cε)

, we deduce that 
∂

∂y1
(u0(x, y)) = 0 in �u

C . Hence 

u0(x, y) = u+(x) a.e. in �u
C for some u+ ∈ L2(�+). Let u1 = u0 − u+. Hence step 3 is com-

pleted.

Step 4: Here, we will show that

(i)
∂u+

∂x2
∈ L2(�+).

(ii) η2(x, y1) = ∂u+

∂x2
a.e. �u

C .

(iii) z2(x, y1) = 0 a.e. in �u
I .
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Proof. (i) and (ii) follows from the properties of T ε
C .

Proof of (iii): The estimate (5), gives us εT εu+
ε → 0 in L2(�u). Now, for ψ ∈ C∞

c (�u), we have

lim
ε→0

∫
�u

εT ε

(
∂u+

ε

∂x2

)
ψ(x, y1)T

εχIε =
∫
�u

z2(x, y1)ψ(x, y1)χI (7)

But, using properties of derivative of unfolding operator and applying integration by parts in the 
left hand side of (7), we get

lim
ε→0

∫
�u

εT ε

(
∂u+

ε

∂x2

)
ψ(x, y1)T

εχIε = − lim
ε→0

∫
�u

εT εu+
ε

(
∂ψ

∂x2

)
T εχIε = 0.

This implies that 
∫
�u

z2(x, y1)ψ(x, y1)χI =
∫
�u

I

z2(x, y1)ψ(x, y1) = 0. Since ψ ∈ C∞
c (�u) is arbi-

trary, we get the required the result. �
Step 5: This step is devoted to prove that η1 = 0 a.e. in �u

C . Taking ψε(x) = εψ
(
x, x1

ε

)
as a test 

function in (1) where ψ ∈ C∞
c (�+; C∞

per (0, 1)) and ψ = 0 on �u
I , applying unfolding operator 

and letting ε → 0 to get ∫
�u

C

η1
∂ψ

∂y1
= 0. (8)

Since ψ is arbitrary implies that η1 = 0 a.e. in �u
C .

Step 6: Now, we will show u+ = u− on γ . Let φ ∈ C∞(�u
C ) such that φ = 0 on ∂�u

C \γ u
C . 

A simple integration by parts gives the following∫
�u

C

T ε

(
∂u+

ε

∂x2

)
φdxdy1 = −

∫
�u

C

T εu+
ε

∂φ

∂x2
dxdy1 +

∫
γ u

C

T ε
b (u+

ε )φ.

Since u+
ε = u−

ε on γ ε
C and with a simple computation, we get∫

γ u
C

u+φ =
∫
γ u

C

u−φ, for all φ ∈ C∞(�u
C ) with φ = 0 on ∂�u

C \γ u
C .

Hence we have u+ = u− on γ u
C . Since u+ and u− are independent of y1, we have u+ = u−

on γ .

Step 7: In this step, we will show that z1 = ∂u1

∂y1
. Let ψε(x) = ψ

(
x, x1

ε

)
where ψ ∈ C∞

c (�u)

with 1-periodic in y1 and ψ = 0 on �u
C . We also easily see that
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lim
ε→0

∫
�+

ε

εχIε

∂u+
ε

∂x1
ψε = −

∫
�u

(u+ + u1(x, y1))χI(y1, x2)
∂ψ

∂y1
.

On the other hand, we have

lim
ε→0

∫
�+

ε

εχIε

∂u+
ε

∂x1
ψε = lim

ε→0

∫
�u

T ε

(
εχIε

∂u+
ε

∂x1

)
T εψ =

∫
�u

χI(y1, x2)z1(x, y1)ψ(x, y1)

Hence we have, ∫
�u

χI(y1, x2)z1(x, y1)ψ(x, y1) = −
∫
�u

χI(u
+ + u1(x, y1))

∂ψ

∂y1

Since ψ is arbitrary we get z1(x, y1) = ∂u1

∂y1
a.e. in �u

I .

Step 8: In this final step, we derive the limit equations using the results obtained in the previous 
steps. Let φε(x) = φ(x) + φ1

(
x, x1

ε

)
where φ ∈ C1(�̄) and φ1 ∈ C∞(�u) with 1 periodic in y1

variable and φ1 = 0 on �u
C . Now using φε as a test function in (1), applying unfolding operator 

both side and letting ε → 0 to get∫
�u

C

∂u+

∂x2

∂φ

∂x2
+
∫
�u

I

∂u1

∂y1

∂φ1

∂y1
+
∫
�u

(u+ + u1)(φ + φ1) +
∫

�−
(∇u−∇φ + uφ)

=
∫
�u

f (φ + φ1) +
∫

�−
f φ

(9)

Put φ = 0 in the above equality to get,∫
�u

I

∂u1

∂y1

∂φ1

∂y1
+
∫
�u

(u+ + u1)φ1 =
∫
�u

f φ1.

Now using the cell problem as in (3) and by uniqueness, we may write

u1(x, y1) = (f (x) − u+(x))ξ(x2, y1).

Now if we put φ1 = 0 in (9), we get∫
�u

C

∂u+

∂x2

∂φ

∂x2
+
∫
�u

(u+ + u1)φ +
∫

�−
(∇u−∇φ + uφ) =

∫
�u

f φ +
∫

�−
f φ (10)

Hence using the cell problem (3), the equation (9) reduces to
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∫
�u

C

∂u+

∂x2

∂φ

∂x2
+
∫
�u

(u+ + (f − u+)ξ)φ +
∫

�−
(∇u−∇φ + uφ) =

∫
�u

f φ +
∫

�−
f φ

which is same as

∫
�+

|YC(x2)|∂u+

∂x2

∂φ

∂x2
+
∫

�+

⎛⎜⎝|Y(x2)| −
∫

YI(x2)

ξdy1

⎞⎟⎠u+φ +
∫

�−
(∇u−∇φ + uφ)

=
∫

�+

⎛⎜⎝|Y(x2)| −
∫

YI(x2)

ξdy1

⎞⎟⎠f φ +
∫

�−
f φ.

This equation has a unique solution as |YC(x2)| > δ and 
(
|Y(x2)| −

∫
YI(x2)

ξ
)

> |YC(x2)|. To 

see the positivity of 

⎛⎜⎝|Y(x2)| −
∫

YI(x2)

ξ

⎞⎟⎠, take w = ξ in the cell problem (3) to see that 

‖ξ‖L2(YI(x2))
< |YI(x2)|1/2. Now,

|Y(x2)| −
∫

YI(x2)

ξ > (|Y(x2)| − |YI(x2)|1/2‖ξ‖L2(YI(x2))
) > |Y(x2)| − |YI(x2)|.

From the geometrical assumption on �, we have, |Y(x2)| − |YI(x2)| = YC(x2) > δ for some 
δ > 0. Hence our limit problem has unique solution. Thus, the proof of the theorem is com-
pleted. �
Remark 4.2.

1. In the above variational problem we have considered the contrasting diffusive coefficients as 
1 and ε2. In fact, we can consider the coefficient of the form O(1) and α2

ε , where αε → 0

as ε → 0. According to the limit k = lim
ε→0

αε

ε
, we will get three different limit problems for, 

k = 0, k = ∞ and k ∈ (0, ∞). What we have studied is essentially the case, where k ∈ (0, ∞), 
that is with αε = ε and hence the exact proof can be reproduced with minor changes. The 
coefficient of the second order term in the cell problem (3) will be k2 instead of 1. The other 
two cases can also be handled with minor modifications of the proof of Theorem 4.1 which 
we do not present it here. Here we are presenting the case when k = 1, that is αε = ε.

2. Here we have considered the PDE with principal part as a Laplace operator in 2-dimension. 
This is only to make the presentation simpler. We can carry out all the results in any finite 
dimension with more general linear elliptic PDE with principal part as div(A(x) · ∇) where 
A(x) are uniformly bounded and elliptic n ×n matrices with high diffusivity coefficients. For 
this we have to make use of the Lemma 7.5 and 7.6, proven in one of our recent article [36].

3. Strong convergence: If we assume M and C are regular enough to get the regularity of ξ , 
then we can actually prove a corrector result as follows. Let u1 as defined in (6). Then, we 
have the following convergence as
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lim
ε→0

(∥∥∥∥∂u+
ε

∂x2
− ∂u+

∂x2

∥∥∥∥
L2(Cε)

+
∥∥∥∥∂u+

ε

∂x1
− ∂u+

∂x1

∥∥∥∥
L2(Cε)

)
= 0,

lim
ε→0

∥∥∥∥ε∇uε −
[ ∂u1

∂y1

(
x,
{

x1
ε

})
0

]∥∥∥∥
L2(Iε)

= 0,

lim
ε→0

‖u+
ε − u+‖L2(Cε)

= 0,

lim
ε→0

∥∥∥u+
ε − u+ − u1

(
x,
{x1

ε

})∥∥∥
L2(Iε)

= 0.

The above convergence follows due to the energy convergence, but we do not have such strong 
convergence for the interior optimal control problem.

5. Optimal control problem

We now consider the optimal control problem associated with strong diffusivity terms in the 
coefficient. This is not done so far in the literature. We apply control in the strong diffusivity 
region Cε . Let ud ∈ L2(�) be the desired state. For θε ∈ L2(Cε) consider the cost functional

Jε(uε, θε) = 1

2

∫
�ε

|uε − ud |2 + β

2

∫
Cε

|θε|2

where uε is the unique solution of the following variational problem: for f ∈ L2(�)⎧⎪⎨⎪⎩
find uε ∈ H 1(�ε) such that∫
�ε

(
χ�− + χCε + ε2χIε

)
∇uε∇φ + uεφ =

∫
�ε

f φ +
∫
�ε

χCε θεφ, for all φ ∈ H 1(�ε) (11)

The optimal control problem is to find (ūε, θ̄ε) ∈ H 1(�ε) × L2(Cε) such that

Jε(ūε, θ̄ε) = inf{Jε(uε, θε)}. (12)

Here uε varies as in (11) as θε varies in L2(Cε).

Theorem 5.1. For every ε > 0 the optimal control problem (12) admits a unique solution 
(ūε, θ̄ε) ∈ H 1(�ε) × L2(Cε).

The above theorem is quite standard as we are considering quadratic cost functional together 
with the elliptic system. In order to analyze the asymptotic behavior of (ūε, θ̄ε) we will use the 
characterization of optimal control θ̄ε by introducing the adjoin state v̄ε which is the solution of 
the following variational form⎧⎪⎨⎪⎩

find v̄ε ∈ H 1(�ε) such that∫
�ε

(
χ�− + χCε + ε2χIε

)
∇v̄ε∇φ + v̄εφ =

∫
�ε

(ūε − ud)φ, for all φ ∈ H 1(�ε). (13)
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Then, we have the following theorem which is also quite standard for each ε > 0.

Theorem 5.2. Let (ūε, θ̄ε) be the optimal solution to the optimal control problem (12) and v̄ε be 
the unique solution of (13). Then θ̄ε is characterized by

θ̄ε = −χCε

1

β
v̄ε. (14)

Conversely, let (ûε, v̂ε) satisfy the following coupled system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
�ε

(
χ�− + χCε + ε2χIε

)
∇ûε∇φ + ûεφ =

∫
�ε

f φ +
∫
�ε

χCε θ̂εφ,

∫
�ε

(
χ�− + χCε + ε2χIε

)
∇v̂ε∇φ + v̂εφ =

∫
�ε

(ûε − ud)φ,

θ̂ε = −χCε
1
β
v̂ε,

(15)

for all φ ∈ H 1(�ε). Then (ûε, θ̂ε) is the optimal solution to the optimal control problem (12).

Hence, in order to study the asymptotic behavior of the optimal control problem (12), it is suffi-
cient to analyze asymptotic behavior of the optimality system (15).

5.1. Limit control problem

In this subsection, we will state the limit control problem in the extended domain. For controls 
θ ∈ L2(�+), consider the following L2 cost functional

J (u, θ) = 1

2

∫
�u

|u+ + u1 − ud |2 + 1

2

∫
�−

|u− − ud |2 + β

2

∫
�u

C

|θ |2

where (u, u1) ∈ H(�) × V (�) satisfies the following micro-macro state system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

find (u,u1) ∈ H(�) × V (�) such that∫
�u

C

∂u+

∂x2

∂φ

∂x2
+
∫
�u

I

∂u1

∂y1

∂φ1

∂y1
+
∫
�u

(u+ + u1)(φ + φ1) +
∫

�−
(∇u−∇φ + uφ)

=
∫
�u

(f + χC(y1, x2)θ)(φ + φ1) +
∫

�−
f φ, for all (φ,φ1) ∈ H(�) × V (�).

(16)

Thus, the limit control system is defined as a two-scale system. We will separate the scales in the 
last section of the article to get the optimal control system in the macro variable. Lax-Milgram 
lemma guarantees the existence and uniqueness. To be more precise, here the continuous elliptic 
bi-linear form say F : (H(�) × V (�)) × (H(�) × V (�)) → R is given by
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F ((u,u1), (φ,φ1)) =
∫
�u

C

∂u+

∂x2

∂φ

∂x2
+
∫
�u

I

∂u1

∂y1

∂φ1

∂y1

+
∫
�u

(u+ + u1)(φ + φ1) +
∫

�−
(∇u−∇φ + uφ),

and the continuous linear functional F : H(�) × V (�) → R, given by

F(φ,φ1) =
∫
�u

(f + χC(y1, x2)θ)(φ + φ1) +
∫

�−
f φ.

The norm for any (φ, φ1) ∈ H(�) × V (�) is given by ‖(φ, φ1)‖H(�)×V (�) = ‖φ‖H(�) +
‖φ1‖V (�).

Now the optimal control problem is to find (ū, ū1, θ̄ ) ∈ H(�) × V (�) × L2(�+) such that

J (ū, ū1, θ̄ ) = inf{J (u,u1, θ) : (u,u1, θ) satisfies (16)}. (17)

A similar type of characterization theorem holds like ε level problem. The corresponding two-
scale adjoint state equation for the above limit state equation is

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

find (v, v1) ∈ H(�) × V (�) such that,∫
�u

C

∂v+

∂x2

∂φ

∂x2
+
∫
�u

I

∂v1

∂y1

∂φ1

∂y1
+
∫
�u

(v+ + v1)(φ + φ1) +
∫

�−
(∇v−∇φ + v−φ)

=
∫
�u

(u+ + u1 − ud)(φ + φ1) +
∫

�−
(u− − ud)φ.

(18)

Now we will state the characterization theorem and it can be proved in a very standard fashion 
and hence we omit it here.

Theorem 5.3. Let (ū, ū1, θ̄ ) and (v̄, v̄1) be the solutions of (17) and (18), then optimal control θ̄
is given by

χC(y1, x2)θ̄(x) = −χC(y1, x2)
1

β
v̄(x). (19)

Conversely, suppose (u, u1, θ), (v, v1) satisfies the following system,
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

for all (φ,φ1) ∈ H(�) × V (�),∫
�u

C

∂u+

∂x2

∂φ

∂x2
+
∫
�u

I

∂u1

∂y1

∂φ1

∂y1
+
∫
�u

(u+ + u1)(φ + φ1) +
∫

�−
(∇u−∇φ + uφ)

=
∫
�u

(f + χC(y1, x2)θ)(φ + φ1) +
∫

�−
f φ,

∫
�u

C

∂v+

∂x2

∂φ

∂x2
+
∫
�u

I

∂v1

∂y1

∂φ1

∂y1
+
∫
�u

(v+ + v1)(φ + φ1) +
∫

�−
(∇v−∇φ + v−φ)

=
∫
�u

(u+ + u1 − ud)(φ + φ1) +
∫

�−
(u− − ud)φ,

and θ = − 1
β
v+ in �u

C .

(20)

Then, (u, u1, θ) is the optimal solution to the optimal control problem (17).

Our aim is to pass to the limit in the limit in the optimality system (15) which will turn out to be 
the limit optimality system (20), which we state and prove below.

Theorem 5.4. For every ε > 0, let (ūε, θ̄ε) be the optimal solution to the optimal control problem 
(12) and v̄ε be the adjoint state. Let H(�) and V (�) be defined as in Section 3. Then, we have 
the following convergences as ε → 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ū−
ε ⇀ u−, v̄−

ε ⇀ v− weakly in H 1(�−),

T εū+
ε ⇀ u+(x) + u1(x, y1), T εv̄+

ε ⇀ v+(x) + v1(x, y1), weakly in L2(�u)

T εχCεT
ε ∂u+

ε

∂x2
⇀ χC(y1, x2)

∂u+

∂x2
, T εχCεT

ε ∂v+
ε

∂x2
⇀ χC(y1, x2)

∂u+

∂x2
, weakly in L2(�u)

εT εχIεT
ε ∂ū+

ε

∂x2
⇀ 0, εT εχIεT

ε ∂v̄+
ε

∂x2
⇀ 0, weakly in L2(�u)

T εχCεT
ε ∂ū+

ε

∂x1
⇀ 0, T εχCεT

ε ∂v̄+
ε

∂x1
⇀ 0, weakly in L2(�u)

εT εχIεT
ε ∂ū+

ε

∂x1
⇀

∂u1

∂y1
, εT εχIεT

ε ∂v̄+
ε

∂x1
⇀

∂v1

∂y1
weakly in L2(�u)

χC(y1, x2)T
εθ̄ε ⇀ −χC(y1, x2)

1

β
v+ weakly in L2(�u)

(21)

Here 
((

u,u1,− 1
β
v+
)

, (v, v1)
)

is the unique solution to the optimality system (20).

Proof. As usual, we present the proof in several steps for easy reading.
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Step 1: (Uniform boundedness) As (ūε, θ̄ε) is the optimal solution to the optimal control prob-
lem, we have Jε(ūε, θ̄ε) � Jε(u0, 0), where u0 is the solution of (11) corresponding to θε = 0. 
This gives the uniform bound on ‖θ̄ε‖L2(Cε)

. In (11) choose φ = ūε to get⎧⎨⎩ ‖χC+
ε
∇ūε‖L2(�+

ε ) + ε‖χI+
ε
∇ūε‖L2(�+

ε ) + ‖∇ūε‖L2(�−) + ‖ūε‖L2(�ε)

� ‖f ‖L2(�ε)
+ ‖χCε θ̄ε‖L2(�+

ε ).

(22)

Using the uniform bound on ‖θ̄ε‖L2(Cε)
, we obtain the uniform bounds on

‖χC+
ε
∇ūε‖L2(�+

ε ), ε‖χI+
ε
∇ūε‖L2(�+

ε ), ‖∇ūε‖L2(�−), ‖ūε‖L2(�ε)
.

Similarly, we have uniform bounds on

‖χC+
ε
∇v̄ε‖L2(�+

ε ), ε‖χI+
ε
∇v̄ε‖L2(�+

ε ), ‖∇v̄ε‖L2(�−), ‖v̄ε‖L2(�ε)
.

Step 2: (Convergence of subsequences) Thus, by the uniform bounds and by the proper-
ties of unfolding operator there exist u−, v− ∈ H 1(�−), u0(x, y1), v0(x, y1) ∈ L2(�u) and 
η(x, y1), σ(x, y1)), z(x, y1), μ(x, y1) ∈ (L2(�u))2 such that⎧⎪⎪⎪⎨⎪⎪⎪⎩

ūε ⇀ u− in H 1(�−),

T ε(ū+
ε ) ⇀ u0(x, y1) in L2(�u),

T ε(χCε ∇̃ūε) = T ε
C (∇̃ūε) ⇀ η(x, y1) = (η1, η2) in (L2(�u

C ))2,

T ε(εχIε ∇̃ūε) ⇀ χI(y1, x2)z(x, y1) = χI(y1, x2)(z1, z2) in (L2(�u))2,⎧⎪⎪⎪⎨⎪⎪⎪⎩
v̄ε ⇀ v− in H 1(�−),

T ε(v̄+
ε ) ⇀ v0(x, y1) in L2(�u),

T ε(χCε ∇̃v̄ε) = T ε
C (∇̃v̄ε) ⇀ σ(x, y1) = (σ1, σ2) in (L2(�u

C ))2,

T ε(εχIε ∇̃v̄ε) ⇀ χI(y1, x2)μ(x, y1) = χI(y1, x2)(μ1,μ2) in (L2(�u))2.

Here ∼ denotes the extension by zero to all of �+.

Step 3: As in the proof of Theorem 4.1, we may see that u0 is independent of y1 in �u
C and there 

exist u+ ∈ L2(�+), u1 ∈ L2(�u) with 
∂u1

∂y1
∈ L2(�u) and u1 = 0 a.e. in �u

C such that

u0(x, y) = u+(x) + u1(x, y1).

Similarly v0 is independent of y1 in �u
C and there exist v+ ∈ L2(�+), v1 ∈ L2(�u) with 

∂v1

∂y1
∈

L2(�u) and v1 = 0 a.e. in �u
C such that

v0(x, y) = v+(x) + v1(x, y1).

Step 4: In this step, we will show that
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(i)
∂u+

∂x2
,

∂v+

∂x2
∈ L2(�+).

(ii) η2(x, y1) = ∂u+

∂x2
, σ2(x, y1) = ∂v+

∂x2
a.e. �u

C .

(iii) z2(x, y1) = 0, μ2(x, y1) = 0, a.e., in �u
I .

Proof of this step is similar to the Step 4 in the proof of Theorem 4.1. For the sake of complete-
ness, we will show it for the adjoint state. Proof for (i) and (ii) follows from the properties of T ε

C . 
For the proof of (iii), the estimate (22), gives εT εv+

ε → 0 in L2(�u). Now, for ψ ∈ C∞
c (�u), we 

have

lim
ε→0

∫
�u

εT ε

(
∂v+

ε

∂x2

)
ψ(x, y1)T

εχIε =
∫
�u

μ2(x, y1)ψ(x, y1)χI (23)

But, using properties of derivative of unfolding operator and applying integration by parts on left 
hand side to get

lim
ε→0

∫
�u

εT ε

(
∂v+

ε

∂x2

)
ψ(x, y1)T

εχIε = − lim
ε→0

∫
�u

εT εv+
ε

(
∂ψ

∂x2

)
T εχIε = 0

This implies that 
∫
�u

μ2(x, y1)ψ(x, y1)χI =
∫
�u

I

μ2(x, y1)ψ(x, y1) = 0. The result (iii) follows as 

ψ ∈ C∞
c (�u) is arbitrary.

Step 5: This step is devoted to prove that η1 = 0, and σ1 = 0 a.e. in �u
C . Taking ψε(x) =

εψ
(
x, x1

ε

)
as a test function in (13), where ψ ∈ C∞

c (�+; C∞
per (0, 1)) and ψ = 0 on �u

I , ap-
plying unfolding operator and letting ε → 0 to get

∫
�u

C

σ1(x, y1)
∂ψ

∂y1
= 0. (24)

The arbitrariness of ψ implies the claim. For η1, the proof is same as in the proof of Theorem 4.1. 

Similarly as in Step 7 of Theorem 4.1, we have z1 = ∂u1

∂y1
, μ1 = ∂v1

∂y1
.

Step 6: (Convergence of optimal control) From the characterization of optimal control, we 
have θ̄ε(x) = − 1

β
χCε (y1, x2)v̄ε . Hence by applying unfolding operator on both sides we have 

χC(y1, x2)T
εθ̄ = − 1

β
χC(y1, x2)T

εv̄ε . Now from the definition of restricted unfolding operator 

we have χC(y1, x2)T
εθ̄ε = − 1

β
χC(y1, x2)T

ε
C v̄ε . Hence we have

χC(y1, x2)T
εθ̄ε(x) ⇀ − 1

χC(y1, x2)v
+(x) weakly in L2(�u).
β
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Step 7: Let φε(x) = φ(x) + φ1
(
x, x1

ε

)
, where φ ∈ C1(�̄) and φ1 ∈ C∞(�u) with 1 periodic in 

y1 variable and φ1 = 0 on �u
C . Now using φε as a test function in (11) with θε = θ̄ε and letting 

ε → 0 to get∫
�u

C

∂u+

∂x2

∂φ

∂x2
+
∫
�u

I

∂u1

∂y1

∂φ1

∂y1
+
∫
�u

(u+ + u1)(φ + φ1) +
∫

�−
(∇u−∇φ + uφ)

=
∫
�u

(
f − χC(y1, x2)

1

β
v+
)

(φ + φ1) +
∫

�−
f φ.

(25)

Similarly for adjoint state we get,∫
�u

C

∂v+

∂x2

∂φ

∂x2
+
∫
�u

I

∂v1

∂y1

∂φ1

∂y1
+
∫
�u

(v+ + v1)(φ + φ1) +
∫

�−
(∇v−∇φ + vφ)

=
∫
�u

(u+ + u1 − ud)(φ + φ1) +
∫

�−
(u− − ud)φ.

(26)

By combining the equations (25) and (26) we obtain the optimality system (20). Since (φ, φ1) ∈
C1(�̄) × C∞(�u) is arbitrary, hence by density it is true for all (φ, φ1) ∈ H(�) × V (�). �
6. Separation of scales

In Section 5, we have obtained the micro-macro two-scale system. We need to separate the 
scales x and y1, and obtain the corresponding homogenized system and cell problem. That is, we 
have separate the cell problem in micro variable y1 to obtain the homogenized system in macro 
variable. As we have mentioned in the introduction, such a separation may not be always possible 
as in a hyperbolic system (see [8]). In our case, we could separate the scales by introducing a 
second cell problem. First, recall the cell problem defined in Section 5 as:⎧⎪⎪⎨⎪⎪⎩

find ξ ∈ V x2 such that∫
Y (x2)

∂ξ

∂y1

∂w

∂y1
dy1 +

∫
Y(x2)

ξwdy1 =
∫

Y(x2)

wdy1 for all w ∈ V x2 .
(27)

We now introduce another cell problem in the insulating region which gives contribution due 
to I . Let w1 = w1(x2, y1) be the unique solution of the following cell problem⎧⎪⎪⎨⎪⎪⎩

w1(x2, y1) ∈ V x2 such that∫
I

∂w1

∂y1

∂w

∂y1
+
∫
I

w1(x2, y1)w =
∫
I

ξw for all w ∈ V x2 .
(28)

In the context of scale separation in the present article, the main difficulty arises due to the adjoint 
state. The limit state equation we can separate like Theorem 4.1. Let us first look into the limit 
state equation. Put φ = 0 in (25) to get,
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∫
�u

I

∂u1

∂y1

∂φ1

∂y1
+
∫
�u

(u+ + u1)φ1 =
∫
�u

f φ1 −
∫
�u

1

β
χC(y1, x2)v

+φ1.

Since φ1 = 0 a.e. in �u
C , above equality can be written as∫

�u
I

∂u1

∂y1

∂φ1

∂y1
+
∫
�u

I

u1φ1 =
∫
�u

I

(f − u+)φ1.

By uniqueness, we can write u1(x, y1) = (f (x) − u+(x))ξ(x2, y1). Now put φ1 = 0, in (25) to 
get

∫
�u

C

∂u+

∂x2

∂φ

∂x2
+
∫
�u

(u+ + u1)φ +
∫

�−
(∇u−∇φ + uφ)

=
∫
�u

f φ +
∫

�−
f φ −

∫
�+

|YC(x2)| 1

β
v+φ.

(29)

Hence using the cell problem (27), we can write (29) as

∫
�u

C

∂u+

∂x2

∂φ

∂x2
+
∫
�u

(u+ + (f − u+)ξ)φ +
∫

�−
(∇u−∇φ + uφ)

=
∫
�u

f φ +
∫

�−
f φ −

∫
�+

|YC(x2)| 1

β
v+φ.

(30)

Thus, we have

∫
�+

|YC(x2)|∂u+

∂x2

∂φ

∂x2
+
∫

�+

⎛⎜⎝|Y(x2)| −
∫

YI(x2)

ξdy1

⎞⎟⎠u+φ +
∫

�−
(∇u−∇φ + uφ)

=
∫

�+

⎛⎜⎝|Y(x2)| −
∫

YI(x2)

ξdy1

⎞⎟⎠f φ +
∫

�−
f φ −

∫
�+

|YC(x2)| 1

β
v+φ

(31)

Let us come to the limit adjoint state equation. By putting φ = 0 in the adjoint state equation, we 
obtain ∫

�u
I

∂v1

∂y1

∂φ1

∂y1
+
∫
�u

(v+ + v1)φ1 =
∫
�u

(u+ + u1 − ud)φ1.

Above form can be written as
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∫
�u

I

∂v1

∂y1

∂φ1

∂y1
+
∫
�u

(v+ + v1)φ1 =
∫
�u

(u+ − ud)φ1 +
∫
�u

I

(f − u+)ξφ1.

Hence we can write v1(x2, y1) = (u+(x) −ud(x) −v+(x))ξ(x2, y1) + (f −u+)w1(x2, y1). Now 
put φ1 = 0 in (26) to get∫

�u
C

∂v+

∂x2

∂φ

∂x2
+
∫
�u

(v+ + v1)φ +
∫

�−
(∇v−∇φ + v−φ)

=
∫
�u

(u+ − ud)φ +
∫
�u

(f − u+)ξφ +
∫

�−
(u− − ud)φ.

Substituting the expression for v1 in the above variational equality, we obtain∫
�u

C

∂v+

∂x2

∂φ

∂x2
+
∫
�u

[v+ + (u+ − ud − v+)ξ + (f − u+)w1]φ +
∫

�−
(∇v−∇φ + v−φ)

=
∫
�u

(u+ − ud)φ +
∫
�u

(f − u+)ξφ +
∫

�−
(u− − ud)φ.

By taking all the terms not involving v+ to the right hand side, we get∫
�u

C

∂v+

∂x2

∂φ

∂x2
+
∫
�u

(1 − ξ)v+φ +
∫

�−
(∇v−∇φ + v−φ)

=
∫
�u

(u+ − ud)(1 − ξ)φ +
∫
�u

(f − u+)(ξ − w1)φ +
∫

�−
(u− − ud)φ.

(32)

Now, using w1 as a test function in (27) and ξ as a test function in (28) we get∫
Y(x2)

∂ξ

∂y1

∂w1

∂y1
dy1 +

∫
Y(x2)

ξw1dy1 =
∫

Y(x2)

w1dy1,

and ∫
Y(x2)

∂w1

∂y1

∂ξ

∂y1
dy1 +

∫
Y(x2)

w1ξdy1 =
∫

Y(x2)

ξ2dy1.

Hence we get, ∫
Y(x2)

w1dy1 =
∫

Y(x2)

ξ2dy1. (33)
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We use (33) in (32) and by integrating both sides with respect to y1. The left hand side of (32)
becomes

∫
�+

|Yc(x2)|∂v+

∂x2

∂φ

∂x2
+
∫

�+

⎛⎜⎝|Y(x2)| −
∫

YI(x2)

ξdy1

⎞⎟⎠v+φ +
∫

�−
(∇v−∇φ + v−φ)

and the right hand side is

∫
�+

⎡⎢⎣
⎛⎜⎝ ∫

Y(x2)

(1 − ξ)2dy1

⎞⎟⎠u+ −
⎛⎜⎝ ∫

Y(x2)

(1 − ξ)dy1

⎞⎟⎠ud +
⎛⎜⎝ ∫

YI(x2)

(ξ − ξ2)dy1

⎞⎟⎠f

⎤⎥⎦φ

+
∫

�−
(u− − ud)φ.

Hence the optimality system (20) can be written in the scale separated form as

Find (u, v) ∈ H(�) × H(�) such that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
�+

|YC(x2)|∂u+

∂x2

∂φ

∂x2
+
∫

�+

⎛⎜⎝|Y(x2)| −
∫

YI(x2)

ξdy1

⎞⎟⎠u+φ +
∫

�−
(∇u−∇φ + uφ)

=
∫

�+

⎛⎜⎝|Y(x2)| −
∫

YI(x2)

ξdy1

⎞⎟⎠f φ −
∫

�+
|YC(x2)| 1

β
v+φ +

∫
�−

f φ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
�+

|YC(x2)|∂v+

∂x2

∂φ

∂x2
+
∫

�+

⎛⎜⎝|Y(x2)| −
∫

YI(x2)

ξdy1

⎞⎟⎠v+φ +
∫

�−
(∇v−∇φ + v−φ)

=
∫

�+

⎡⎢⎣
⎛⎜⎝ ∫

Y(x2)

(1 − ξ)2dy1

⎞⎟⎠u+ −
⎛⎜⎝ ∫

Y(x2)

(1 − ξ)

⎞⎟⎠ud +
⎛⎜⎝ ∫

YI(x2)

(ξ − ξ2)dy1

⎞⎟⎠f

⎤⎥⎦φ

+
∫

�−
(u− − ud)φ.

(34)

The above optimality system corresponds to the following optimal control problem: For 
f ∈ L2(�) and θ ∈ L2(�+), consider the L2 cost functional

J̄ (u, θ) = 1

2

∫
+

∫ ∣∣(1 − ξ)u+ + f ξ − ud

∣∣2 + 1

2

∫
−

|u− − ud |2 + β

2

∫
+

|YC(x2)||θ |2

� Y(x2) � �
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where u = (u+, u−) satisfies the following state equation,

∫
�+

|YC(x2)|∂u+

∂x2

∂φ

∂x2
+
∫

�+

⎛⎜⎝|Y(x2)| −
∫

YI(x2)

ξdy1

⎞⎟⎠u+φ +
∫

�−
(∇u−∇φ + uφ)

=
∫

�+

⎛⎜⎝|Y(x2)| −
∫

YI(x2)

ξdy1

⎞⎟⎠f φ +
∫

�−
f φ +

∫
�+

|YC(x2)|θφ for all φ ∈ H(�)

(35)

The optimal control problem is to find the (ū, θ̄ ) ∈ H(�) × L2(�+) such that

J̄ (ū, θ̄ ) = inf{J (u, θ) : (u, θ) obeys (35)}. (36)

The strong form of the above optimality system can be written as follows: Let

α(x) = |Y(x2)| −
∫

YI(x2)

ξdy1.

The state equations are

⎧⎪⎨⎪⎩ − ∂

∂x2

(
|YC(x2)|∂u+

∂x2

)
+ α(x)u+ = α(x)f + |YC(x2)|θ in �+

−�u− + u− = f in �−

The adjoint system is

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− ∂

∂x2

(
|YC(x2)|∂v+

∂x2

)
+ α(x)v+ =

⎛⎜⎝ ∫
Y(x2)

(1 − ξ)2dy1

⎞⎟⎠u+ −
⎛⎜⎝ ∫

Y(x2)

(1 − ξ)dy1

⎞⎟⎠ud

+
⎛⎜⎝ ∫

YI(x2)

(ξ − ξ2)dy1

⎞⎟⎠f in �+

−�v− + v− = (u− − ud) in �−

The optimal control is

θ = − 1

β
v+ in �+

The boundary and interface conditions are given by
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⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

u+ = u−, v+ = v− on γC

∇u− · ν = ∇v− · ν = 0 on ∂�−\γC

|YC(0)|∂u+

∂x2
= ∂u−

∂x2
, |YC(0)|∂v+

∂x2
= ∂v−

∂x2
on γC

∂u+

∂x2
= 0,

∂v+

∂x2
= 0 on γu (upper boundary).

Remark 6.1. As in Remark 4.2, we can make the similar remark in the context of optimal control 
problem also.

7. Control on Iε

In this section we will present the result on asymptotic behavior of optimal control and optimal 
state when the controls are applied on the insulating part Iε. To prove these results, similar 
techniques will work as presented in Section 5. However, the major difference is the convergence 
of the control which is acting on the insulating part leading to difficulty in the separation of the 
scales. It seems to us that a complete separation is not possible. Nevertheless, we do obtain 
the state equation (homogenized equation) in macro-scale, but the cost functional is not able to 
separate in micro-scale. We will point out in the coming subsection the difficulty in separating 
the macro-micro scales. Let us prescribe the control problem. Let the desired state ud ∈ L2(�). 
For θε ∈ L2(Iε), consider the following L2-cost functional

Jε(uε, θε) = 1

2

∫
�ε

|uε − ud |2 + β

2

∫
Iε

|θε|2,

where uε is the unique solution of the following variational problem: for f ∈ L2(�)

⎧⎪⎨⎪⎩
find uε ∈ H 1(�ε) such that∫
�ε

(
χ�− + χCε + ε2χIε

)
∇uε∇φ + uεφ =

∫
�ε

f φ +
∫
�ε

χIε θεφ, (37)

for all φ ∈ H 1(�ε). The optimal control problem is to find (ūε, θ̄ε) ∈ H 1(�ε) ×L2(Iε) such that

Jε(ūε, θ̄ε) = inf{Jε(uε, θε) : (uε, θε) satisfies (37)}. (38)

The following results, for fixed ε > 0, are standard.

Theorem 7.1. For every ε > 0 the optimal control problem (38) admits a unique solution 
(ūε, θ̄ε) ∈ H 1(�ε) × L2(Iε).

Theorem 7.2. Let (ūε, θ̄ε) be the optimal solution to the optimal control problem (38) and v̄ε be 

the unique solution of the adjoint state. Then θ̄ε can be written as θ̄ε = −χIε

1

β
v̄ε . Conversely, let 

(ûε, v̂ε) satisfy the following variational system,
81



A.K. Nandakumaran and A. Sufian Journal of Differential Equations 291 (2021) 57–89
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
�ε

(
χ�− + χCε + ε2χIε

)
∇ûε∇φ + ûεφ =

∫
�ε

f φ +
∫
�ε

χIε θ̂εφ,

∫
�ε

(
χ�− + χCε + ε2χIε

)
∇v̂ε∇φ + v̂εφ =

∫
�ε

(ûε − ud)φ,

θ̂ε = −χIε
1
β
v̂ε,

(39)

for all φ ∈ H 1(�ε). Then (ûε, θ̂ε) is the optimal solution to the optimal control problem (38).

Uniform boundedness: As (ūε, θ̄ε) is the optimal solution to the optimal control problem, we 
have Jε(ūε, θ̄ε) � Jε(u

0
ε, 0), where u0

ε is the state corresponding to the control θε = 0. This gives 
the uniform bound on ‖θ̄ε‖L2(Iε)

. In (37) choose φ = ūε to get

‖χC+
ε
∇ūε‖L2(�+

ε ) + ε‖χI+
ε
∇ūε‖L2(�+

ε ) + ‖∇ūε‖L2(�−) + ‖ūε‖L2(�ε)
� ‖f ‖L2(�ε)

+ ‖χIε θ̄ε‖.
(40)

Using the uniform bound on ‖θ̄ε‖L2(Iε)
we deduce the uniform bounds on the states as 

‖χC+
ε
∇ūε‖L2(�+

ε ), ε‖χI+
ε
∇ūε‖L2(�+

ε ), ‖∇ūε‖L2(�−), ‖ūε‖L2(�ε)
. Similarly we have uniform 

bounds on ‖χC+
ε
∇v̄ε‖L2(�+

ε ), ε‖χI+
ε
∇v̄ε‖L2(�+

ε ), ‖∇v̄ε‖L2(�−), and ‖v̄ε‖L2(�ε)
.

Theorem 7.3. For every ε > 0, let (ūε, θ̄ε) be the optimal solution to the optimal control problem 
(38) and v̄ε be the adjoint state. Let H(�) and V (�) be defined as in Section 3. Then, we have 
the following convergences as ε → 0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ū−
ε ⇀ u−, v̄−

ε ⇀ v− weakly in H 1(�−),

T εū+
ε ⇀ u+(x) + u1(x, y1), T εv̄+

ε ⇀ v+(x) + v1(x, y1), weakly in L2(�u)

T εχCεT
ε ∂u+

ε

∂x2
⇀ χC(y1, x2)

∂u+

∂x2
, T εχ+

Cε
T ε ∂v+

ε

∂x2
⇀ χC(y1, x2)

∂u+

∂x2
, weakly in L2(�u)

εT εχ+
Iε

T ε ∂ū+
ε

∂x2
⇀ 0, εT εχ+

Iε
T ε ∂v̄+

ε

∂x2
⇀ 0, weakly in L2(�u)

T εχCεT
ε ∂ū+

ε

∂x1
⇀ 0, T εχ+

Cε
T ε ∂v̄+

ε

∂x1
⇀ 0, weakly in L2(�u)

εT εχIεT
ε ∂ū+

ε

∂x1
⇀

∂u1

∂y1
, εT εχ+

Iε
T ε ∂v̄+

ε

∂x1
⇀

∂v1

∂y1
weakly in L2(�u)

χI(y1, x2)T
εθ̄ε ⇀ −χI(y1, x2)

1

β
(v+ + v1) weakly in L2(�u)

(41)

where (u, u1, v, v1) ∈ (H(�) × V (�))2 satisfies the following 2-scale optimality system
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
�u

C

∂u+

∂x2

∂φ

∂x2
+
∫
�u

I

∂u1

∂y1

∂φ1

∂y1
+
∫
�u

(u+ + u1)(φ + φ1) +
∫

�−
(∇u−∇φ + uφ)

=
∫
�u

(f + χI(y1, x2)(θ + θ1)(φ + φ1) +
∫

�−
f φ,

∫
�u

C

∂v+

∂x2

∂φ

∂x2
+
∫
�u

I

∂v1

∂y1

∂φ1

∂y1
+
∫
�u

(v+ + v1)(φ + φ1) +
∫

�−
(∇v−∇φ + v−φ)

=
∫
�u

(u+ + u1 − ud)(φ + φ1) +
∫

�−
(u− − ud)φ,

for all (φ,φ1) ∈ H(�) × V (�) and

θ + θ1 = − 1

β
(v+ + v1) in �u

I .

(42)

If we look at the convergence (21) in the case of controls acting on the non-insulating region, 
the limit control has only one component θ ∈ L2(�+), but in the present case the limit control 
has the form θ + θ1, where θ1 also depends on the micro-variable. Interestingly, we do give a 
formula for θ1 in terms of θ and two-scale part of the adjoint solution. This is the difficulty 
in getting a complete separation of the scales in the cost functional. The optimality system (42)
corresponds to the following optimal control problem; For the source term f ∈ L2(�) and control 
(θ, θ1) ∈ L2(�+) × L2(�u

I ) (or one can think θ1 ∈ L2(�u) with θ1 = 0 a.e. in �u
C ), consider the 

following L2-cost functional

J (u,u1, θ, θ1) = 1

2

∫
�u

(u+ + u1 − ud)2 + 1

2

∫
�−

(u− − ud)2 + β

2

∫
�u

I

(θ + θ1)
2 (43)

where (u, u1) ∈ H(�) × V (�) satisfies the following variational form∫
�u

C

∂u+

∂x2

∂φ

∂x2
+
∫
�u

I

∂u1

∂y1

∂φ1

∂y1
+
∫
�u

(u+ + u1)(φ + φ1) +
∫

�−
(∇u−∇φ + uφ)

=
∫
�u

(f + χI(y1, x2)(θ + θ1))(φ + φ1) +
∫

�−
f φ,

(44)

for all (φ, φ1) ∈ H(�) × V (�). Now the optimal control problem is to find (ū, ū1, θ̄ , θ̄1) ∈
H(�) × V (�) × L2(�+) × L2(�u

I ) such that

J (ū, ū1, θ̄ , θ̄1) = inf{J (u,u1, θ, θ1) : (u,u1, θ, θ1) satisfies (44)}. (45)

Using the standard method of calculus of variations, we can prove the unique existence of the 
two-scale system which is stated below.

Theorem 7.4. The optimal control problem (45) has a unique solution (ū, ū1, θ̄ , θ̄1) ∈ H(�) ×
V (�) × L2(�+) × L2(�u

I ).
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7.1. Separation of scales

Here, as in the earlier optimal control problem on Cε , we are unable to apply the procedure 
for the complete separation of scales in the limit state equation. This may be due to the intrinsic 
nature of the problem. However, as mentioned earlier, we do obtain the homogenized equation 
for the limit state in the macro variable. In this case, if we put φ = 0 in the limit state equation 
(44), we get the following

∫
�u

I

∂u1

∂y1

∂φ1

∂y1
+
∫
�u

(u+ + u1)φ1 =
∫
�u

(f + χI(y1, x2)(θ + θ1)φ1

Since (θ + θ1) = −χI
1
β
(v+ + v1), hence we cannot separate like earlier as v1 is a function of 

y1 also. We separate as much as can by splitting u1 into two parts u11 and u12, where in some 
sense u12 does not involve micro scale, but u11 has dependency on both micro and macro scales. 
The idea behind the separation of scale here to look u and u1 closely and try to see how they are 
coupled with each other.

In the limit optimality system (42), in the state equation part put φ1 = 0, and keep φ ∈ H(�)

arbitrary, and then put φ = 0 and keep φ1 ∈ V (�) arbitrary, we will obtain the following varia-
tional system

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
�+

(
|YC(x2)|∂u+

∂x2

)
∂φ+

∂x2
+
∫

�+
|Y(x2)u

+φ+ =
∫

�+

∫
Y(x2)

(f + (θ + θ1) − u1)φ
+

∫
�u

∂u1

∂y1

∂φ1

∂y1
+
∫
�u

u1φ1 =
∫
�u

[(θ + θ1) + (f − u+)]φ1

∫
�−

∇u−∇φ− +
∫

�−
u−φ =

∫
�−

f φ−

for all (φ, φ1) ∈ H(�) ×V (�). In the above, we have assumed supp(φ+) ⊂ �+ and supp(φ−) ⊂
�−. This is really not necessary, but for the convenience of writing the equations in �+ and �−
separately. Let us write u1 = u11 +u12, where u11 and u12 satisfy the following variational forms,

∫
�u

∂u11

∂y1

∂φ1

∂y1
+
∫
�u

u11φ1 =
∫
�u

(θ + θ1)φ1 (46)

∫
�u

∂u12

∂y1

∂φ1

∂y1
+
∫
�u

u12φ1 =
∫
�u

(f − u+)φ1 (47)

The second equation motivates us to introduce the cell problem as follows: Find ξ ∈ V (�) which 
satisfies the following variational form
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∫
�u

∂ξ

∂y1

∂φ1

∂y1
+
∫
�u

ξφ1 =
∫
�u

φ1. (48)

Then, we can write the solution of (47) as u12 = (f −u+)ξ . Note that for each x2 ∈ (0, 1), ξ(x2, ·)
is the solution of the cell problem (3). Hence the state equation in the upper part becomes∫

�+
|YC(x2)|∂u+

∂x2

∂φ+

∂x2
+
∫

�+
|Y(x2)|u+φ+ =

∫
�+

∫
Y(x2)

(f + (θ + θ1) − u11 − (f − u+)ξ)φ+.

This implies∫
�+

|YC(x2)|∂u+

∂x2

∂φ+

∂x2
+
∫

�+
α(x)u+φ+ =

∫
�+

∫
Y(x2)

((1 − ξ)f + (θ + θ1))φ
+ −

∫
�+

∫
Y(x2)

u11φ
+,

where α(x) =
⎛⎜⎝|Y(x2)| −

∫
YI(x2)

ξdy1

⎞⎟⎠. Now using φ+ξ as a test function in (46) and u11φ
+ in 

(48), we get the following∫
�u

φ+ ∂u11

∂y1

∂ξ

∂y1
+
∫
�u

u11φ
+ξ =

∫
�u

(θ + θ1)φ
+ξ

∫
�u

φ+ ∂ξ

∂y1

∂u11

∂y1
+
∫
�u

ξφ+u11 =
∫
�u

φ+u11

It follows that 
∫

�+

∫
Y(x2)

φ+u11 =
∫

�+

∫
Y(x2)

ξ(θ + θ1)φ
+ for all φ+ ∈ C∞(�̄+). Now using this 

equality and density, the two-scale state equation reduces to the following⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
�+

|YC(x2)|∂u+

∂x2

∂φ+

∂x2
+
∫

�+
α(x)u+φ+ +

∫
�−

∇u−∇φ− +
∫

�−
u−φ

=
∫

�+

∫
Y(x2)

((1 − ξ)f + (1 − ξ)(θ + θ1))φ
+ +

∫
�−

f φ−,

∫
�u

∂u11

∂y1

∂φ1

∂y1
+
∫
�u

u11φ1 =
∫
�u

(θ + θ1)φ1,

(49)

for all (φ, φ1) ∈ H(�) × V (�). The L2-cost functional reduces to

J (u,u11, θ, θ1)=1

2

∫
−

(u− −ud)2 + 1

2

∫
+

∫
((1−ξ)u++ξf +u11 −ud)2 + β

2

∫
+

∫
(θ +θ1)

2

� � Y(x2) � Y(x2)

85



A.K. Nandakumaran and A. Sufian Journal of Differential Equations 291 (2021) 57–89
Hence the limit optimal control is to find (ū, ū11, θ̄ , θ̄1) ∈ H(�) × V (�) × L2(�+) × L2(�u
I )

such that

J (ū, ū11, θ̄ , θ̄1) = inf{J (u,u11, θ, θ1) : (u,u11, θ, θ1) satisfies (49)}. (50)

Let the adjoint state (v, v11) ∈ H(�) × V (�) satisfies the following system,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
�+

|YC(x2)|∂v̄+

∂x2

∂φ+

∂x2
+
∫

�+
α(x)v̄+φ+ +

∫
�−

∇v−∇φ− +
∫

�−
u−φ− =

∫
�−

(ū− − ud)φ−+

∫
�+

∫
Y(x2)

[
(1 − ξ)2ū+ + ξ(1 − ξ)f

]
φ+ +

∫
�+

∫
Y(x2)

[(1 − ξ)ū11 − (1 − ξ)ud ]φ+,

∫
�u

∂v̄11

∂y1

∂φ1

∂y1
+
∫
�u

v̄11φ1 =
∫
�u

[(1 − ξ)ū+ + ξf + ū11 − ud ]φ1,

(51)

for all (φ, φ1) ∈ H(�) × V (�).

Theorem 7.5. Let (v̄, v̄11) ∈ H(�) × V (�) adjoint state that is satisfies (51) and (θ̄ , θ̄1) ∈
L2(�+) × L2(�u

I ) is the optimal control. Then the optimal control is given by

(θ̄ + θ̄1) = − 1

β
((1 − ξ)v̄+ + v̄11) a.e. in �u

I

Proof. Let (θ, θ1) ∈ L2(�+) × L2(�u
I ) fixed but arbitrary. Define (θλ, θλ

1 ) = (θ̄ , θ̄1) + λ(θ, θ1), 
corresponding to (θλ, θλ

1 ) the state denoted by (uλ, uλ
11) and the cost by Jλ. Also denote the cost 

corresponding to (θ̄ , θ̄1) by J̄ . Now

lim
λ→0

Jλ − J̄

λ
=
∫
�u

[(1 − ξ)ū+ + ξf + ū11 − ud ][(1 − ξ)w+ + w11]

+
∫

�−
(ū− − ud)w− + β

∫
�u

I

(θ + θ1)(θ̄ + θ̄1)

Hence we have

J ′(θ̄ , θ̄1)(θ, θ1) =
∫
�u

[(1 − ξ)ū+ + ξf + ū11 − ud ][(1 − ξ)w+ + w11]

+
∫

�−
(ū− − ud)w− + β

∫
�u

I

(θ + θ1)(θ̄ + θ̄1)

(52)

where (w, w11) ∈ H(�) × V (�) satisfies the following variational system
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⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∫
�+

|YC(x2)|∂w+

∂x2

∂φ+

∂x2
+
∫

�+
α(x)w+φ+

∫
�−

∇w−∇φ− +
∫

�−
w−φ− =

∫
�u

I

(1 − ξ)(θ + θ1)φ
+

∫
�u

∂w11

∂y1

∂φ1

∂y1
+
∫
�u

w11φ1 =
∫
�u

I

(θ + θ1)φ1.

(53)

Hence using (v̄, v̄11) as a test function in (53) and (w, w11) in (51), we get∫
�u

[(1 − ξ)ū+ + ξf + ū11 − ud ][(1 − ξ)w+ + w11] +
∫

�−
(ū− − ud)w−

=
∫
�u

I

(1 − ξ)(θ + θ1)v̄
+ +

∫
�u

(θ + θ1)v̄11

Using the above equality in (52), we get

J ′(θ̄ , θ̄1)(θ, θ1) =β

∫
�u

I

(θ + θ1)(θ̄ + θ̄1) +
∫
�u

I

(θ + θ1)[(1 − ξ)v̄+ + v̄11] (54)

As (θ̄ , θ̄1) is the optimal control we have J ′(θ̄ , θ̄1)(θ, θ1) = 0. Since (θ, θ1) was fixed but arbi-
trary, gives us the following equality

θ̄ + θ̄1 = − 1

β
[(1 − ξ)v̄+ + v̄11] in �u

I . �
Remark 7.6. Though, we do not have further decomposition of the cost functional, the control 
has a partial separation as follows. From the above characterization we can have the explicit 
information about the optimal control. Recall that v̄11, ξ and θ1 are supported in �u

I . Hence we 
have

θ̄ (x) = − 1

β
v̄+(x) for all (x, y1) ∈ �u

C ,

and hence θ̄ = − 1

β
v̄+. This implies that θ̄1 = − 1

β
(−ξ v̄+ + v̄11) in �u

I .
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